Full characterization of optimal transport plans for concave costs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Optimal Transport Plans for the Monge-kantorovich-problem

We prove that c-cyclically monotone transport plans π optimize the Monge-Kantorovich transportation problem under an additional measurability condition. This measurability condition is always satisfied for finitely valued, lower semi-continuous cost functions. In particular, this yields a positive answer to Problem 2.25 in C. Villani’s book. We emphasize that we do not need any regularity condi...

متن کامل

Spatial competition with concave transport costs

We study the location-then-price game played by two firms in a circular market when consumers face non-linear transport costs. We show that for any convex transport cost function there exists a concave one such that the location-then-price games induced by these functions are strategically equivalent. Further, we provide a sufficient condition to guarantee that a similar equivalence result hold...

متن کامل

Network Optimization with Concave Costs

In this paper the problem of minimum cost communication network design is considered where the costs are piecewise linear concave. Several methods are compared: Simulated Annealing method, a heuristic based on the method proposed by Minoux, and a lagrangian method based on lower bounding procedure.

متن کامل

Network Optimization with Concave Costs

In this paper the problem of minimum cost communication network design is considered where the costs are piecewise linear concave. Several methods are compared: Simulated Annealing method, a heuristic based on the method proposed by Minoux, and a lagrangian method based on lower bounding procedure.

متن کامل

Local Matching Indicators for Transport Problems with Concave Costs

In this paper, we introduce a class of local indicators that enable to compute efficiently optimal transport plans associated to arbitrary weighted distributions of N demands and M supplies in R in the case where the cost function is concave. Indeed, whereas this problem can be solved linearly when the cost is a convex function of the distance on the line (or more generally when the cost matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2015

ISSN: 1078-0947

DOI: 10.3934/dcds.2015.35.6113